*-*dJ_KQSQV@LI*-* - OKUL DERSLERİ

Ana Sayfa
ZiYARETCi DEFTERİ
DİZİ İZLE
DÜNYA HARİTASI
BUGÜN OLAN OLAYLAR
FOTO GALERİSİ
AŞK TESTİ
MESAJ
DEVAMSIZLIKLAR
ŞOK HABERLER
ŞİİRLER
ANKETLER
71' DEN HABERLER
OKUL DERSLERİ
TOP10
HARİTALAR(MAPS)
YÖNETİCİ
YEMEK LİSTESİ



 
=> Daha kayıt olmadın mı?

OKUL DERSLERİ - Birinci Dereceden Bir Bilinmeyenli Denklem

Burdasın:
OKUL DERSLERİ => MATEMATİK => Birinci Dereceden Bir Bilinmeyenli Denklem

<-Geri

 1 

Devam->


By_LoRd
(şimdiye kadar 24 posta)
22.01.2008 07:15 (UTC)[alıntı yap]
Birinci dereceden bir
bilinmeyenli denklemler

ve a 0 olmak üzere ax +b=0 şeklindeki eşitliklere birinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan x sayısına denklemin kökü, bu kökün oluşturduğu kümeye çözüm kümesi denir.

ax+b=0 ise sayısı denklemin köküdür.

Çözüm kümesi:

Ç= olur.

Örnekler:

1) 6x +12 =0 denkemini çözüm kümesini bulunuz.

Çözüm:

6x+12=0  6x= -12
x= x=-2 Ç= olur.
2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.

Çözüm:

-5x+ 6+ x =1 –x +8
-4x + 6 = -x + 9
-4x +x = 9-6
-3x=3
x= -1 Ç=
3) denkleminin çözüm kümesini bulunuz.
Çöm: denklemde paydası eşitlenir:



4) x-{2x-[x+1-(3x-5)]} = 3 ise x kaçtır?
Çözüm:

[x+1-3x+5]
[-2x+6]
{2x+2x-6}
x-4x+6 = 3
-3x =  x= 1 Sonuç: 1

5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?
Çözüm:

9(1-2x) – 5(2-5x) = 20
9-18x-10+25x = 20
7x-1= 20
7x = 21
x = 3
Sonuç: 3

6) x 2 x 1
----- + ----- = ----- + 1----- denkleminin çözüm kümesi nedir?
3 5 5 3

Çözüm:
x 2 x 4
----- + ----- = ----- + -----
3 5 5 3
(5) (3) (3) (5)

5x+6 3x+20
------- = ------- = 5x + 6 = 3x+20
15 15

2x = 14  x = 7 Sonuç: 7


7) Kendisine katı eklendiğinde 72 eden sayı kaçtır?

Çözüm:


=
2x+5=1 ise “x” kaçtır?

Çözüm:
2x = -4
x = -2  Sonuç = {-2}

9) Toplamları 77 olan iki sayıdan birinin 3 katı, aynı sayının 4 katıyla toplamına eşittir.Bu Sayıların Küçük Olanı Kaçtır?

Çözüm:

3x+4x = 77
7x = 77
x = 7
3x = 33 Sonuç = {33}

10) Bu denklemdeki x’ in değerini bulunuz.
Çözüm:





x = 5 Sonuç = {5}

11) “x” in değerini bulunuz.
Çözüm:




- 45 = 5x-35
5x = -10
x = -2

Sonuç = {-2}

12) “x” in değerini bulunuz.

Çözüm:


3x-5 = -20
3x = -15
x = -5 Sonuç = {-5}

13) denklemini ve koşuluyla x’i bulunuz.
Çözüm

x=-1 fakat (x 1 ve x koşulundan dolayı

Ç=Ǿdir

14) için x ’in değeri kaçtır?
Çözüm
 x=3 (x 3 koşulundan dolayı )

Ç=Ǿdir


Birinci Dereceden İki
Bilinmeyenli Denklemler

olmak üzere açık önermesine birinci dereceden iki bilinmeyenli denklem denir.
denkleminde x ’e verilebilecek her değer için bir y değeri bulunabilir. Bulunan (x,y) ikililerinden her birine denklemin bir çözümü denir. Çözüm kümesi sonsuz elamanlıdır.

Örnekler:

1) denklemini çözüm kümesini bulup düzlemde göster.

x=0 için y=2.0-1(0,-1)
x=1 için y=2.1-1(1,1)
x=2 için y=2.2-1(2,3)
x=3 için y=2.3-1(3,5)
x için y=2x-1(y 2x –1)

Prof. Kemal By_LoRd

Cevapla:

Nickin:

 Metin rengi:

 Metin büyüklüğü:
Tag leri kapat



Bütün konular: 27
Bütün postalar: 29
Bütün kullanıcılar: 8
Şu anda Online olan (kayıtlı) kullanıcılar: Hiçkimse crying smiley

Daha hiç link yok!

Senin linkin burada olsun mu?
O zaman buraya kaydını yaptır:
=> Kayda git













WebMaster : dJ_KQSQV@LI | Sitede bugün 13979 ziyaretçi vardı.
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol